Карбон

Откуда взялось слово Карбон? Происходит оно из далекого прошлого нашей планеты сроком примерно в 360—286 млн. лет назад, за который в недра Земли были заложены огромные запасы каменного угля. Этот период был назван каменноугольным, или сокращенно – карбон.

Возможно, разработчики углепластика отдали дань тому отрывку истории, которому человечество обязано своим подъемом, возможно, были и другие мотивации.

Впервые об углеродных волокнах услышали в 1880 году в идее Эдисона использовать их в качестве нити накаливания ламп. Эта идея вскоре была забыта с приходом вольфрамовой проволоки. И только в середине прошлого века интерес к углепластикам проявился вновь. Искались новые материалы, способные выдержать многотысячную температуру ракетных двигателей. Множество стран, включая Россию, трудилось в создании карбона и нельзя сказать, что этот путь был легким. Впервые карбон был использован в программе NASA, при постройке космических кораблей. Карбон не обошел стороной и военных. К примеру, довольно широко известно применение шлемов из углепластика. В 1967 году карбон появился в свободной продаже в Англии, но в ограниченном количестве и под контролем государства. Когда же в 1981 г. Джон Барнард впервые использовал карбоновое волокно при создании монокока F1 на McLaren MP4, углепластик с триумфом ворвался в автоспорт, и до сих пор карбон остается одним из лучших материалов. Теперь углепластик входит и в наш повседневный быт…

Технология изготовления и особенности карбона

Карбоновое волокно подразумевает композит – это сплошной неоднородный материал, состоящий из двух армирующих элементов и одного связующего, что благоприятно сказывается на характеристиках карбонового волокна: высокая прочность, износостойкость, жесткость и т.д. Армирующими элементами могут быть: переплетенные нити углепластика и резины (такой карбон выглядит в серых тонах, хотя, вполне может быть любых расцветок), углепластика и кевлара (в карбоне испещрен желтыми нитями), углепластика и еще какого-либо материала. Нити переплетают между собой под определенным углом, образуя слои, причем, в каждом слое карбона углы переплетения разные. Это делается для компенсации ярко выраженных разнонаправленных свойств углепластиков. В листе карбона на 1 мм толщины приходится 3-4 таких слоя. Вся эта конструкция скрепляется эпоксидными смолами.

Сами углеродные волокна для карбона можно изготовить разными способами. Вот самые востребованные из них: выращивание кристаллов в световой дуге, химическая осадка углерода, построение органических волокон в специальной печи (ее также называют автоклавом). Последний способ получения волокон для карбона получил наибольшее распространение: за материал берутся волокна полиакрилонитрила, которые окисляют на воздухе в течение 24 часов, при температуре 250 градусов. Потом волокна переносят в инертный газ, где производится последующий процесс карбонизации - высокотемпературный длительный нагрев в пределах от 800 до 1500 градусов. Нагрев приводит наше промежуточное изделие к пиролизу (убывают летучие соединения, а в самих волокнах образуются новые связи), за время, которого материал обугливается. Далее следует графитизация (насыщение углеродом) при температурах 1600-3000 градусов, так же в инертной среде. На этом процесс изготовления волокон для карбона заканчивается. Далее следует переплетение готовых нитей с другим армирующим элементом в слои.

Для придания ещё большей прочности ткани из нитей углерода кладут слоями, каждый раз меняя угол направления плетения. Слои скрепляются с помощью эпоксидных смол.

Нити углерода обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Термическая обработка состоит из нескольких этапов:

     1.  Полиакрилонитрильноговискозного

  1. После окисления следует стадия карбонизации — нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур.
  2. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %.

Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения нитей углерода могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков. Кроме того, детали из карбона превосходят по прочности детали из стекловолокна, но, при этом, обходятся значительно дороже аналогичных деталей из стекловолокна.

Слои карбона собираются двумя способами:

  • "Мокрый" способ - самый распространенный. Волокна укладываются в форму, пропитываются эпоксидной смолой, излишки смолы удаляются в вакууме или под давлением, а оставшаяся смола полимеризуется, само карбоновое изделие формируется под давлением.
  • "Сухой" - немного более сложный процесс. Берутся углепластиковые заготовки, изготовленные под давлением, которые формируют в процессе создания.

Карбон, изготовленный сухим способом, намного прочнее и легче мокрого. Как их отличить? Очень просто: при проведении рукой по сухому чувствуется его ребристая структура (если его, конечно, не покрыли лаком), а мокрый карбон совсем гладкий на ощупь.

Карбон разделяется на сорта, зависящие от времени прогрева волокон в автоклаве.

Давайте теперь посмотрим на свойства карбона с положительной стороны:

  • углеродные волокна карбона на растяжение также хороши, как сталь, но вот на сжатие ведут себя не лучшим образом, решением данной проблемы стало их сплетение в углепластиковое волокно.
  • при этом карбон легче, чем сталь на 40%, легче алюминия на 20% и, конечно же, легче чем пластик.
  • карбон, собранный из углерода и кевлара, хоть и немного тяжелее, чем резина с углеродом, имеет намного большую прочность, а при ударах трескается, крошится, но не разбивается на части.
  • карбон выдерживает температуру 1600 градусов.
  • карбон – хороший энергопоглотитель (его можно увидеть вместо крыши двигателя).
  • неокрашенный карбон потрясающе стильно и красиво выглядит.

И с отрицательной:

  • первый по значимости для многих тюнеров минус – стоимость карбона довольно высока, хотя он постепенно дешевеет.
  • высокая сложность ремонта карбона или невозможность восстановления в случае повреждения.
  • карбон обладает электропроводностью, а если сравнивать с обычным корпусом, то какая разница?
  • со временем карбон становится темно-желтоватого оттенка на солнце, поэтому углепластик следует беречь от ярких лучей нашей звезды, обычно для этого карбон покрывают специальным лаком, а иногда и вовсе красят.
  • карбон, составленный из углепластика и резины, может выдержать мощнейшие ударные нагрузки, но если во время столкновения он не выдержит, то расколется на множество острых кусков. Еще больным местом такого карбона можно назвать боязнь точечных ударов.
  • в отличие от металла, карбон легче и, потому, может легко оторваться на прогулке с ветерком, потому карбоновым деталям требуется основательное крепление.
  • длительное время изготовления карбоновых деталей на заказ.
  • в местах контакта карбона с металлом в соленой среде металл быстро коррозирует (например, зимой, когда дороги посыпаются разной химией с солью), проблема устраняется стеклопластиковыми вставками между карбном и металлом, которые встраиваются в углепластик.

Несмотря на недостатки карбона, его плюсы с лихвой перекрывают любые недостатки.

 Применение

Углепластики широко используются при изготовлении лёгких, но прочных деталей, заменяя собой металлы, во многих изделиях от частей космических кораблей до удочек, среди которых:

  • ракетно-космическая техника;
  • авиатехника (самолётостроение, вертолётостроение (например, несущие винты));
  • судостроение (корабли, спортивное судостроение);
  • автомобилестроение (спортивные автомобили (например, бамперы, пороги, двери, крышки капотов), мотоциклы, болиды Формулы 1: кокпиты и обтекатели), а также при оформлении салонов;
  • наука и исследования;
  • усиление железобетонных конструкций;
  • спортивный инвентарь (роликовые коньки, велосипеды, футбольные бутсы, хоккейные клюшки, лыжный спорт (лыжи, палки, ботинки), ракетки для тенниса, основания для настольного тенниса, лезвия коньков, стрелы, оборудование виндсерфинга, моноласты), вёсла;
  • медицинская техника;
  • рыболовные снасти (удилища);
  • профессиональные фото- и видеоштативы;
  • бытовая техника (отделка корпусов телефонов, ноутбуков, рукояти складных ножей и пр.);
  • моделизм;
  • музыкальные инструменты (струны);
  • изготовление индивидуальных супинаторов (особенно для спорта).

Источники:

http://ru.wikipedia.org/

http://a-tuningcar.narod.ru/carbon.html